https://i.imgur.com/sy5Ab25.jpg
Παίρνοντας ως παράδειγμα τα τετράγωνα 3x3 (δηλαδή αυτά που έχουν 3 μικρά τετραγωνάκια ως πλευρά) μπορούμε να δούμε στη σκακιέρα ότι υπάρχουν στην πιο αριστερή κάθετη πλευρά 6 τέτοια τετράγωνα, όπως παρόμοια και στην πιο πάνω οριζόντια πλευρά. Έτσι έχουμε 6χ6=36 τετράγωνα 3χ3. Για τα 4χ4 τετράγωνα θα έχουμε 5 και 5 αντίστοιχα, άρα 25. Με την ίδια λογική για τη σκακιέρα θα έχουμε
1χ1 => 64
2χ2 => 49
3χ3 => 36
4χ4 => 25
5χ5 => 16
6χ6 => 9
7χ7 => 4
8χ8 => 1
με τελικό αριθμό τετραγώνων το 204.
Με μια γενίκευση για σκακιέρα (layout για την ακρίβεια, η σκακιέρα δεν έχει μεταβαλλόμενο αριθμό κουτιών) με Ν κουτάκια ανά πλευρα έχουμε τον τύπο Ν^2 + (Ν-1)^2 + (Ν-2)^2 + ... + 1^2.