Jump to content



#labxmas2014 day 17 gift 28


DJD

Recommended Posts

  • Replies 287
  • Created
  • Last Reply

Το σύνολο όλων των συνδυασμών τετραγώνων σε μία σκακιέρα 64 τετραγώνων (8x8) ανέρχεται σε 204 (=64+49+36+25+16+9+4+1).

204 είναι

 

f6af40c91277765726855bdd36a8389d.png

 

 

Αυτος εβαλε και τυπους... Τον Γιωργη θα αντιγραψω!! 204

8 x 8 = 64 

 

Αν υποθέσουμε ότι δεν αναφέρεται και σε συνδιασμούς πολλαπλών άσπρων - μαύρων τετραγώνων (αλα τηλεπαιχνίδια :p ) όπου τότε όπως αναλύθηκε από τους προηγούμενους, είναι 204 !

204

 

1, 8x8 square
4, 7x7 squares
9, 6x6 squares
16, 5x5 squares
25, 4x4 squares
36, 3x3 squares
49, 2x2 squares
64, 1x1 squares

 

64 + 49 + 36 + 25 + 16 + 9 + 4 + 1 = 204

Ο αριθμός είναι το πλήθος διαφορετικών τετραγώνων που σχηματίζονται με αυτό τα τετραγωνάκι ως πάνω-αριστερή-γωνία. Αθροίζοντας τα πλήθη έχουμε σύνολο = 1x8 + (2x7+1x7) + (3x6+2x6) + (4x5+3x5) + (5x4+4x4) + (6x3+5x3) + (7x2+6x2) + (8x1+7x1) = 8 + 21 + 30 + 35 + 36 + 33 + 26 + 15 = 204 Τετράγωνο 8x8 είναι μόνο ένα, η ίδια η σκακιέρα.

Για κάθε άλλο τετράγωνο nxn, υπάρχουν (8-n+1)

204

 

1, 8x8 square
4, 7x7 squares
9, 6x6 squares
16, 5x5 squares
25, 4x4 squares
36, 3x3 squares
49, 2x2 squares
64, 1x1 squares

 

64 + 49 + 36 + 25 + 16 + 9 + 4 + 1 = 204

Η πιο προφανής απάντηση είναι 64 μοναδιαία τετράγωνα - 8 σε κάθε πλευρά.

Όμως τα τετράγωνα που ορίζονται πάνω σε μια σκακιέρα είναι πολύ περισσότερα:

64 1x1 +

49 2x2 +

36 3x3 +

25 4x4 +

16 5x5 +

9 6x6 +

4 7x7 +

1 8x8 =

204

204

 

1, 8x8 square
4, 7x7 squares
9, 6x6 squares
16, 5x5 squares
25, 4x4 squares
36, 3x3 squares
49, 2x2 squares
64, 1x1 squares

 

64 + 49 + 36 + 25 + 16 + 9 + 4 + 1 = 204

204 !!!

 

1 τετράγωνο 8χ8

4 τετράγωνα 7χ7

9        >>       6χ6

16      >>       5χ5

25      >>       4χ4

36      >>       3χ3

49      >>       2χ2

64      >>       1χ1

Άρα 1+4+9+16+25+36+49+64=204 τετράγωνα

Archived

This topic is now archived and is closed to further replies.

×
×
  • Δημιουργία...

Important Information

Ο ιστότοπος theLab.gr χρησιμοποιεί cookies για να διασφαλίσει την καλύτερη εμπειρία σας κατά την περιήγηση. Μπορείτε να προσαρμόσετε τις ρυθμίσεις των cookies σας , διαφορετικά θα υποθέσουμε ότι είστε εντάξει για να συνεχίσετε.